Module Thirteen

Assurance

This module describes assurance methods for guaranteeing and maintaining
the security of trusted systems. The TCSEC requirements for assurance are
described, and testing is discussed in detail along with other assurance
methods.

Module Learning Objectives

This module presents some information that elaborates material presentedin
Module 5. Most of the material presented here can be read independentlyof the
other modules. Upon completion of this module, the student should:

1. Understand why assurance is necessary.
2. Understand the TCSEC assurance requirements.

3. Be familiar with the scope and philosophy of testing required for TCSEC
evaluated products.

4. Be familiar with formal methods and trusted recovery and distribution.

5. Understand the documentation used to support the TCSEC assurance
requirements.

Overview

Trusted systems must provide confidence that the security policy theyenforce
has been correctly implemented (i.e., that the protection relevant elements of
the system do, indeed, work only as intended by their designers). To accomplish
this objective, two types of assurance are needed: operational assurance and
life-cycle assurance.

Operational Assurance

Operational assurance applies to those features of a trusted system thatare

built into it to guarantee that the system's security policy cannot be
circumvented. This definition implies that the security policy must be
integrated into the hardware and software protection features of the system.
Operational assurance is achieved by using hardware and software to provide
distinct domains and to isolate protection-critical code (System Architecture),
and by using diagnostic methods to check the correctness of hardware and
software operations (System Integrity). Additional operational assuranceis

achieved by performing a thorough search for covert channels (Covert Channel
Analysis), by distinct separating trusted user functions (TrustedF acility
Management), and by ensuring that a system can recover from failurewithout
compromising the security provided by the system (Trusted Recovery).

System architecture is discussed in detail in Module 7, and system integrity is
sufficiently summarized in Module 4. This section describes theremaining
operational assurance methods: covert channel analysis, trusted facility
management, and trusted recovery.

-1- January 1995

Module Thirteen

Covert Channel Analysis

Covert channels are described in Module 8. Covert channel analysis attempts
to identify covert channels in the system, estimate the bandwidth of each, and
assess their impact on the security of the system. Although covertstorage
channel analysis is required by the TCSEC at class B2 and both covert storage
and timing channel analysis at class B3, any trusted system identified as
possessing very high bandwidth covert channels should have these channels
removed or reduced. A covert channel analysis effort for a B2 system is
described in [Loepere84]. Formal methods of analysis are required at Al.

Trusted Facility Management

Trusted facility management consists of the administrative procedures, roles,
functions (e.g., commands, programs, interfaces), privileges, and databases
that are used for secure system configuration, administration andoperation. It
iIs an area of operational assurance that is required of classes B2 and above.
The objective of trusted facility management is to support security and
accountability policies throughout a system's operation. To accomplish this
goal, two key requirements are the separation between Administrator and
Operator functions, starting at class B2, and between security-relevant and
non-security-relevant functions of system administrators, starting at class B3.
These separations help ensure that security-adverse effects of humanerror ,
misdeed, and system failure do not affect administrative functions and data.

Trusted Recovery

Trusted recovery provides assurance that a system that experiences an
operational failure or other discontinuity will, through proceduresand/or
trusted mechanisms, recover without a protection compromise. Trusted
recovery is required of classes B3 and Al. Guidelines on trusted recovery are
provided in [RECOV91].

Life-Cycle Assurance

Life-cycle assurance refers to the steps taken to ensure that the trustedsystem
Is designed, developed, and maintained using formalized and rigorouscontrols
and standards, and that it has been able to withstand concerted and
methodical attempts to make its security mechanisms fail (i.e., violate its
security policy). Life-cycle assurance is achieved by careful evaluation and
testing throughout the system design and development phases (Security
Testing). Even when security testing fails to uncover any flaws in design or
implementation, it cannot prove that the trusted system can never behave in
some undesired manner. Therefore, additional life-cycle assurance is achieved
by documenting the system's policy objectives and design features and
demonstrating their implementation (Design Specification and Verification),
by configuration managing security-relevant hardware and software
(Configuration Management), and by controlling the distributionof the system
in such a way that there are no discrepancies between the versions distributed
and the master copy maintained by the vendor (Trusted Distribution).

-2- January 1995

Module Thirteen

Configuration management is described in Module 15. This sectiondescribes
the remaining life-cycle assurance methods: security testing, design
specification and verification, and trusted distribution.

Security Testing

Security testing is the most common technique for gaining assurance that a
system operates within the constraints of a given set of policies and
mechanisms. It is a method for gaining assurance about implementation, and
is used to determine that the security features of a system areimplemented as
designed and that they are adequate for a proposed TCSEC security class. For
any trusted system, security testing must be based on the flaw hypothesis of
testing, which requires that tests must be designed to demonstrate that the
trusted system, in general, and the TCB, in particular, fail to meet their
documented system and functional requirements. Various testing methods can
be applied to security testing, as discussed in [Myers79] and [Gligor87].
Functional security testing is required starting at C1 and is intendedto

uncover obvious flaws and to remove or neutralize them. At B2 and above,
penetration testing is also required and is intended to demonstrate thatthe

trusted system is flawless in design and nearly flawless in implementation.

Functional Security Testing

Functional security testing is required at all TCSEC classes. The strengths of
functional security testing are that it can identify flaws and it is a familiar
technology to developers (i.e., it is similar to testing that is normally
performed). Functional security testing can be repeated for each product
release to help ensure that changes do not have any unintended affects on the
security mechanisms. Functional security testing is limited in that it is
generally impossible to perform exhaustive testing and the generation of
meaningful tests is difficult. While the testing process may handily uncover
errors, the completion of this process does not provide strong assurance that
there are no errors remaining. An example of a security-related functional
testing effort is described in [Haley85].

There has been some debate over what components of a system require
functional security testing. Basically, it is those components that are
responsible for enforcing the system's security policy (i.e., the TCB). The TCB
includes those components that are used by trusted users to performsecurity-
relevant tasks, such as defining users, downgrading classified information,
limiting access to various resources, and so on. Because such users are trusted
to enter the correct information, they require either special programs
restricted for their use alone or special privileges to perform such tasks, or
both. As a result, such restricted programs or programs that require privilege
to execute must be considered part of the TCB, and, therefore, are subject to
functional security testing. Even the graphical interface used by an
administrator, while not performing anything security-relevant in itself, must
at least be tested for correctness if it is the sole means by which a trusted user
communicates with the TCB.

A second area of debate has been over the level of system abstraction towhic h
functional security testing applies. Certainly, in the development of any large

-3- January 1995

Module Thirteen

and complex system, testing can occur at many different levelscorresponding
to the different levels of system abstraction: module (moduletesting), system
design (integration testing), system interfaces (functionaltesting), system

objectives (system testing), user requirements (acceptance andinstallation

testing). From a TCSEC requirements point of view, security functional testing
corresponds to system and functional level testing.

Therefore, a good model for functional security testing must cover all security
requirements, objectives, and functional features of a trusted system. The
TCSEC provides the high-level requirements, while each evaluated system
documents in its philosophy of protection what those requirements meanas
specific system objectives. System objectives are also stated explicitly and
implicitly throughout the system documentation. The security-relevant
functional features of a trusted system are identifiable through itsinterfaces
to the TCB and the system design documentation. The test plan requiredof all
evaluated systems must show how the test procedures and cases of thesecurity
test suite adequately cover all the security-relevant features of thetrusted
system.

Penetration Testing

At B2 and above, the TCSEC requires penetration testing. This form of testing
is really no different than system or functional testing in terms of itsobjectives.
The purpose of security testing is to discover flaws in the trusted system, and
this is the same goal for penetration testing. However, penetration testing
differs from functional testing in terms of the effort made to uncoverfla ws.
Penetration testing is a form of security testing that has would-bepenetrators
working under no constraints other than those that are applied toordinary
users attempting to circumvent the security features of an active system.The
penetrators are provided with all system design and implementation
documentation, including listings of system source code, manuals, and circuit
diagrams. System flaws are hypothesized and attempts made to exploit the
flaws. The outcome of this testing may direct changes to the system's design
to eliminate the flaw or may require procedural guidelines to be added to the
Trusted Facility Manual or Security Features User's Guide so as not to create
conditions that permit the flaw to be exploited. The strengths and limitations
of penetration testing are similar to those of security testing: flaws may be
effectively found, but the penetration attempts are only as good as the
penetrators and never conclusively demonstrate that the system cannot be
penetrated by some means not attempted. A penetration testing effort is
described in [Quann87].

Design Specification and Verification

A design specification describes system behavior in terms of axioms or in terms
of exceptions, error conditions, and effects. Specifications can take several
different forms, such as a security policy model (discussed in Module 5), a
detailed top-level specification (DTLS), or a formal top-levelspecification

(FTLS). Verification is the process of comparing two levels of design
specification for proper correspondence (e.g., rules of operation with axioms,
security policy model with top-level specification, top-levelspecification with

-4 - January 1995

Module Thirteen

source code). This comparison promotes the identification ofoverlooked errors,
the review of ambiguous or incomplete functionality, and an analysis of the
completeness of correctness criteria. Verification is expensive, both in time and
resources, and requires special expertise.

Formal verification is the process of using formal proofs todemonstrate
properties of a formal specification. A formal proof is a complete andconvincing
mathematical argument that presents the full logical justification foreac h
proof step. Formal proofs are generally performed with the assistance of
automated tools; an overview and comparison of four formal verificationtools
is provided in [Cheheyl81]. An introduction to formal specificationand
verification is presented in [Gasser88].

Informal verification is less rigorous than formal verificationbecause it

permits the specifications to be informally stated and informal proof
techniques to be used. Informal verification techniques are not well defined,
and the results are dependent on correct interpretation of requirementsand

specifications written in natural language, which is prone to ambiguities and
omissions. Nevertheless, if care is taken in the implementation, performance of
an informal verification greatly enhances an assurance effort.

Design specification and verification requirements begin at class B1 with
mandates to develop an informal (or formal) security policy modeland to

informally demonstrate that it is consistent with its axioms. At class B2, a
formal security policy model (FSPM) must be written and informallyproven to
be consistent with its axioms, and a DTLS must be written and informally
shown to be an accurate description of the TCB interface. At B3, an informal
convincing argument must be made that the DTLS is consistent with the
FSPM. At Al, an FTLS must be written and informally shown to be anaccurate
description of the TCB interface. In addition, class Al requires a formal FTLS-
to-FSPM proof and an informal FTLS-to-code mapping.

Trusted Distribution

Trusted distribution provides assurance that the TCB running at a site isthe

same as the TCB that was evaluated. A system control and distribution facility
must maintain the integrity of the mapping between the description ofthe

current version of the TCB and the on-site current version that isrunning .
Procedures must exist that assure the TCB software, firmware, and hardware
updates distributed to a site are exactly as specified by the mastercopies .
Trusted distribution addresses two threats: someone tampering with asystem

during transportation from the vendor site to the customer site, and a system
or update arriving at the customer site that is not a legitimate systemsent by
the vendor. Trusted distribution is required at class Al. A trusted distribution
mechanism can also be used to detect accidental or deliberate damage to the
system during operations by comparing the latest distributed version tothe

currently operating version. Guidelines on trusted distribution areprovided in

[DISTR88].

-5- January 1995

Module Thirteen

Relevant Trusted Product Evaluation Questionnaire Questions

2.11 TESTING

C1:

B1:

1.

(a) What routines are available to test the correct operation ofthe
system hardware and firmware? (b) What elements of the system
hardware are tested through these routines? (c) What elements of
the system firmware are tested through these routines? (d) What
elements of the system hardware and firmware are not tested
through these routines? (e) Does the testing include boundary and
anomalous conditions? (f) Is the emphasis on diagnosing and
pinpointing faults or is it on ensuring the correct operation of the
system hardware and firmware?

(&) How are the routines in the previous question invoked?(b)
Who can invoke these routines? (c) Do they run under the control
of the operating system or do they run in stand-alone mode?

(@) When can these routines be run? (b) When should these
routines be run? (c) If they run automatically, when do they run
(e.g., powerup, booting, rebooting)?

Describe the software development testing methodology. In this
description, include a discussion of various testing steps such as
unit, module, integration, subsystem, system testing. This
discussion should include a description of test coverage criteria
and test cases development methodology.

Provide (a) a copy of the security test plan, a brief descriptionof
its contents, or an annotated outline. (b) Does the test plan
include the following information: system configuration for
testing, procedures to generate the TCB, procedures to bring up
the system, testing schedule, test procedures, test cases, expected
test results? (c) Provide a schedule for development of thesecurity
test plan if such a test plan doesn't already exist.

(a) How thorough is the security testing? (b) Do the testcases

include nominal, boundary, and anomalous values for each input?
(c) What about the combinations of inputs? (d) Describe thetest

coverage criteria.

(a) How are the test cases developed? (b) Are they based onthe
concept of functional testing, structural testing, or a combination
of the two?

What tools and techniques (automated, manual, or a combination
of the two) will be used to do the functional and/or structural
analysis in order to develop a thorough set of test cases?

How do you plan to ascertain that errors have been minimized in
the system?

-6- January 1995

B2:

10.

11.

12.

Al:

13.

Module Thirteen

What is the role of the descriptive top-level specification (DTLS)
in the functional and/or structural analysis done in order to
develop a thorough set of test cases?

(a) Do you plan to develop scenarios for penetration testing?(b) If
so, what methodologies will be used?

How do you plan to compute and verify the bandwidths of covert
channels?

What is the role of the formal top-level specification (FTLS) inthe
functional and/or structural analysis done in order to develop a
thorough set of test cases?

2.12 MODELING AND ANALYSIS

B2:
5.

B3:

11.

Al:

12.

13.

14.

15.

(a) Provide a copy of the Verification Plan, a brief descriptionof
its contents, or an annotated outline. (b) Provide a schedule for
completion of the Verification Plan.

(a) What tools, techniques and methodologies are used to
represent the descriptive top-level specification (DTLS)?(b) What
portions of the TCB are represented by the DTLS?

What tools, techniques and methodologies are used to show that
the DTLS is consistent with the formal security policy model?

(@) What tools, techniques and methodologies are used to
represent the formal top-level specification (FTLS)? (b)What
portions of the TCB are represented by the FTLS?

What tools, techniques and methodologies are used to verify or
show that the FTLS is consistent with the formal security policy
model?

What tools, techniques and methodologies are used to identify the
implemented code modules that correspond to the FTLS?

What tools, techniques and methodologies are used to show that
the code is correctly implemented vis-a-vis the FTLS?

2.13 OTHER ASSURANCES

B2:
8.

Describe the version control or other philosophy to ensure that
the object code corresponds to the correct source code, which in
turn is accurately abstracted in the DTLS.

-7 - January 1995

11.

Al:

15.

16.

17.

Module Thirteen

How do you plan to show consistency between the DTLS and the
code?

Describe the version control or other philosophy which ensures
that the FTLS continues to accurately describe the system
through system changes.

How do you plan to show consistency among the FTLS, DTLS and
the code?

Describe the tools, techniques and procedures used to ensure the
integrity of the TCB elements (hardware, firmware, software,
documents, etc.) supplied to the customers (e.g., trusted courier,
electronic seals, physical seals).

Required Readings

TCSEC85

National Computer Security Center, Department of Defense
Trusted Computer Security Evaluation Criteria, DoD 5200.28-
STD, December 1985.

There are a large number of requirements related to assurance
that are in the TCSEC. A number of these requirements do not
appear until the higher assurance classes. Each subject area is
listed below along with the Sections where its requirements
appear in the TCSEC:

e System Architecture: 2.
3.2.3.1.1, 3.3.3.1.1, and 4.
105).

= System Integrity: 2.1.3.1.2, 2.2.3.1.2, 3.1.3.1.2, 3.2.3.1.2,
3.3.3.1.2, and 4.1.3.1.2 (summarized on page 106).

e Covert Channel Analysis: 3.2.3.1.3, 3.3.3.1.3, and 4.1.3.1.3
(summarized on page 97).

e Trusted Facility Management: 3.2.3.1.4, 3.3.3.1.4, and
4.1.3.1.4.

= Trusted Recovery: 3.3.3.1.5 and 4.1.3.1.5 (summarized on
page 108).

= Security Testing: 2.1.3.2.1, 2.2.3.2.1, 3.1.3.2.1, 3.2.3.2.1,
3.3.3.2.1,and 4.1.3.2.1 (summarized on page 104).

= Design Specification and Verification: 3.1.3.2.2, 3.2.3.2.2,
3.3.3.2.2,and 4.1.3.2.2 (summarized on pages 98-99).

e Configuration Management: 3.2.3.2.3, 3.3.3.2.3, and
4.1.3.2.3 (summarized on pages 96-97).

= Trusted Distribution: 4.1.3.2.4 (summarized on page 106).

1.31.1, 22311, 3.13.1.1,
1.3.1.1 (summarized on page

The assurance control objectives are described in Section 5.3.3.
The policy basis for the TCSEC control objectives for assurance is

-8- January 1995

INTERP94

Gasser88

DISTRS88

Module Thirteen

described in Section 7.5. A guideline on covert channels is
provided in Section 8.0. A guideline on security testing is provided
in Section 10.0.

National Computer Security Center, The Interpreted TCSEC
Requirements, (quarterly).

The following Interpretation is relevant to system architecture:
C1-Cl1-04-85 System Architecture

The following Interpretation is relevant to system integrity:
1-0144 Availability of diagnostics

The following Interpretations are relevant to covert channel
analysis:

C1-Cl1-02-84 Security Testing

C1-CI-07-84 Audit

The following Interpretations are relevant to security testing:

1-0170 Functional tests required for object reuse
C1-Cl1-01-83 Security Testing
C1-Cl-02-84 Security Testing

The following Interpretations are relevant to design specification
and verification:

1-0254 UNIX-style manual pages as DTLS
C1-Cl1-01-87 FTLS Accuracy

The following Interpretation is relevant to configuration
management:

1-0285 CM comparison source or object?

None of the Interpretations are relevant to trusted facility
management, trusted recovery, or trusted distribution.

Gasser, M., Building a Secure Computer System, Van Nostrand
Reinhold Co., N.Y., 1988.

Section 4.3 provides an introduction to assurance and the
system's development path. Section 10.2.3 provides some
thoughts on assurance techniques. Chapter 12 talks about formal
specification and verification. It describes formal specification
techniques, properties of formal specifications, proof techniques,
and how a specification to model correspondence is accomplished.
The student should not be too concerned with the detailed
information on formal verification.

National Computer Security Center, A Guide to Understanding
Trusted Distribution in Trusted Systems, NCSC-TG-008, Version
1, 15 December 1988.

-9- January 1995

Haley85

Loepere84

RECOV91

STTD93

Sullivan89

TFM89

Module Thirteen

This document provides guidance on the TCSEC trusted
distribution requirements. It discusses protective packaging,
secure product transportation, and site validation.

Haley, C., and Mayer, F., “Issues on the Development of Security
Related Functional Tests,” Proceedings of the 8th National
Computer Security Conference, pp. 82-85, September 1985.

This paper presents some initial efforts to describe what the
TCSEC requires for security testing. It also illustrates the notion
of boundary-value coverage analysis.

Loepere, K., Resolving Covert Channels within a B2 Class Secure
System, Multics Development Center -- Honeywell Information
Systems, 1984.

This paper discusses practical aspects of finding covert channels.
While covert channels are not a direct concern of RAMP systems,
this paper offers very good descriptions of the system-wide
concerns a vendor would face. << Note: this paper is included in
the Required Reading materials for Module 8. >>

National Computer Security Center, A Guide to Understanding
Trusted Recovery in Trusted Systems, NCSC-TG-022, Version 1,
30 December 1991.

This document provides guidance on the TCSEC trusted recovery
requirements. It discusses good practices for trusted recovery.

National Computer Security Center, A Guide to Understanding
Security Testing and Test Documentation in Trusted Systems,
NCSC-TG-023, Version 1, July 1993.

This document provides an in-depth guide to security testing,
emphasizing the testing of systems to meet the TCSEC
requirements. It gives system developers and vendors
suggestions and recommendations on how to develop testing and
testing documentation that will be found acceptable by an NSA
evaluation team.

Sullivan, E., “What is a Trusted System Anyway?,” Proceedings of
SHARE72, July 1989.

In answering the paper's title question, assurance and assurance
techniques are summarized.

National Computer Security Center, A Guide to Understanding
Trusted Facility Management, NCSC-TG-015, Version 1, 18
October 1989.

“This document provides guidance to manufacturers on how to
incorporate functions of trusted facility management into their
systems; to system evaluators and accreditors on how to evaluate
the design and implementation of trusted facility management
functions; and to end users on how to use these functions

-10 - January 1995

Module Thirteen

effectively, e.g., on how to avoid common pitfalls of system
management.”

Supplemental Readings

Cheheyl81

CM88

Kemme86b

Linde75

Quann87

VERIF89

Other Readings
Barker89

Cheheyl, M., Gasser, M., Huff, G., and Millen, J., “Verifying
Security,” Computing Surveys, Vol. 13, No. 3, September 1981.

This paper provides an introduction to verification and a
comparison of four automated specification and formal
verification tools: Gypsy, HDM, FDM, and Affirm.

National Computer Security Center, A Guide to Understanding
Configuration Management in Trusted Systems, NCSC-TG-006,
Version 1, 28 March 1988.

This document provides guidance on the TCSEC configuration
management requirements and discusses issues involved in
implementing configuration management in the development and
life-cycle of a trusted system.

Kemmerer, R., “A Brief Summary of a Verification Assessment
Study,” Proceedings of the 9th National Computer Security
Conference, pp. 1-6, September 1986.

Presents an overview of the five volume report found in
[Kemme86a] that reviews the Affirm, FDM, Gypsy, and enhanced
HDM verification systems in great depth.

Linde, R., “Operating System Penetration,” Proceedings of the
1975 National Computer Conference, pp. 361-368, 1975.

An early paper that examines a penetration methodology.

Quann, J. and Belford, P., “The Hack Attack: Increasing
Computer System Awareness of Vulnerability Threats,” AIAA/
ASIS/IEEE Third Aerospace Computer Security Conference, pp.
155-157, December 1987.

This paper discusses a penetration study effort of NASA
spaceflight mission support systems that used external computer
hackers under controlled conditions.

National Computer Security Center, Guidelines for Formal
Verification Systems, NCSC-TG-014, Version 1, 1 April 1989.

This document provides guidance on the requirements and
evaluation process for formal verification systems that are
candidates for the NSA's Endorsed Tools List.

Barker, W., “Use of Privacy-Enhanced Mail for Software
Distribution,” Proceedings of the 5th Aerospace Computer Security
Applications Conference, pp. 344-347, December 1989.

-11- January 1995

Casey88

Freema88

Gligor87

Kemme86a

Lu89

Myers79

Neely85

Smith88

Stauffer86

Weiss88

Young85

Module Thirteen

Casey, T., Vinter, S., Weber, D., Varadarajan, R., and Rosenthal,
D., “A Secure Distributed Operating System,” Proceedings of the
IEEE 1988 Symposium on Security and Privacy, pp. 27-38, April
1988.

Freeman, J., Neely, R., and Megalo, L., “Developing Secure
Systems: Issues and Solutions,” Proceedings of the 4th Aerospace
Computer Security Applications Conference, pp. 183-190,
December 1988.

Gligor, V., Chandersekaran, C., Jiang, W., Johri, A,
Luckenbaugh, G., and Reich, L., “A New Security Testing Method
and Its Application to the Secure Xenix Kernel,” IEEE
Transactions on Software Engineering, Vol. SE-13, No. 2, pp. 169-
183, February 1987.

Kemmerer, R., Verification Assessment Study Final Report,
NCSC-C3-Cr01-86, Vols. I-V, March 1986.

Lu, M.M. and Mayer, B.A., “Guidelines for Formal Verification
Systems: Overview and Rationale,” Proceedings of the 12th
National Computer Security Conference, pp. 75-82, October 1989.

Myers, G., The Art of Software Testing, John Wiley & Sons,N.Y .,
1979.

Neely, R. and Freeman, J., “Structuring Systems for Formal
Verification,” Proceedings of the 1985 IEEE Symposium on
Security and Privacy, pp. 2-13, April 1985.

Smith, B., Reese, C., Lindsay, K., and Crane, B., “A Description of
a Formal Verification and Validation (FVV) Process,” Proceedings
of the 4th Aerospace Computer Security Applications Conference,
pp. 401-408, December 1988.

Stauffer, B. and Fujii, R., “Informal Verification Analysis,”
Proceedings of the 9th National Computer Security Conference,
pp. 126-129, September 1986.

Weiss, J. and Amoroso, E., “Ensuring Software Integrity,”
Proceedings of the 4th Aerospace Computer Security Applications
Conference, pp. 323-330, December 1988.

Young, W., Boebert, W., and Kain, R., Proving a Computer System
Secure, reprinted in Tutorial Computer and Network Security
IEEE Computer Society Order Number 756, 1985.

-12 - January 1995

